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Abstract

A three-dimensional method of analysis is presented for determining the free vibration frequencies and mode
shapes of spherical shell segments with variable thickness. Displacement components uf, uz, and uy in the
meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in y,
and algebraic polynomials in the f and z directions. Potential (strain) and kinetic energies of the spherical shell
segment are formulated, and upper bound values of the frequencies are obtained by minimizing the frequencies. As
the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are

presented for thick spherical shell segments with constant or linearly varying thickness and completely free
boundaries. Convergence to four-digit exactitude is demonstrated for the ®rst ®ve frequencies of the spherical shell
segments. The method is applicable to thin spherical shell segments, as well as thick and very thick ones. 7 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Spherical shells are extensively used in civil, mechanical, aircraft, and naval structures. The free
vibration of solid and hollow spheres has been a subject of study for more than a century, sometimes
with interest in the oscillations of the earth.

The problem of radial vibrations of the solid sphere was ®rst discussed by Poisson (1829). Over
50 years later, Jaerisch (1880), Lamb (1882) and Chree (1889) considered the propagation of free
harmonic waves in an elastic solid sphere. Jaerisch (1880) showed that the solution could be
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expressed by means of spherical harmonics. The result was obtained independently by Lamb (1882)

who gave an account of the simpler modes of vibration and of the nature of the nodal division of

the sphere. He used rectangular coordinates to obtain the equations governing the free vibration of

the solid sphere, and Chree (1889) subsequently obtained the equations in the more convenient

spherical coordinates.

The corresponding problem of a closed hollow sphere was ®rst analyzed by Lamb (1883). Much later,

the vibration of hollow spheres was also studied by Shah et al. (1969), using 2D and exact 3D theory,

and natural frequency parameters for several shells with di�erent inner to outer radius ratios were

presented in graphical form. Cohen and Shah (1972) used two auxiliary variables and obtained two

classes of vibrations for a spherically isotropic, hollow sphere in a vacuum on the basis of 3D elasticity

theory. Three displacement functions were introduced, and then further expanded in terms of the

spherical harmonics, so that the problem was ®nally reduced to a set of second-order ordinary

di�erential equations. The Frobenius power series method was used to seek the solution of the

equations. But the solutions they obtained were only special cases of the complete solution, and

di�culty existed in locating the expressions of displacement and stress components by their method.

Grigorenko and Kilina (1990) used a 3D formulation and two approximate 2D theories, the classical

Kirchho�-Love theory and a re®ned Timoshenko-type theory, to examine hollow thin-walled laminated

spherical shells. Graphical results were presented for a hollow sphere comprised of a single, isotropic

layer, and one comprised of three, orthotropic layers. Chang and Demkowicz (1995) determined natural

frequencies of a vibrating hollow, elastic sphere using both the 3D elasticity and Kirchho� shell theory.

Ding and Chen (1996) studied the nonaxisymmetric free vibrations of a spherically isotropic shell

embedded in an elastic medium, on the basis of 3D elasticity theory. Three displacement functions were

introduced to simplify the governing equations of a spherically isotropic medium for the free vibration

problem. They expressed explicitly the frequency equations considering the coupled conditions at the

interface between shell and elastic medium. Jiang et al. (1996) provided numerical values for the natural

frequency parameters for a signi®cant, but not excessive, number of modes of vibration of a small

selection of hollow spheres comprised of two or three layers of linear elastic, homogeneous and isotropic

materials. In the paper, the 3D equations used were given for a two-layered hollow sphere as derived

from the work of SaÃ to and Usami (1962) and Shah et al. (1969). The equations for an N-layered hollow

sphere could be obtained by analogy. Two other publications that treat layered spheres are those of

Nelson (1973) and Shah and Frye (1975).

The above mentioned literature uses 3D theory, and deals with solid or closed hollow spheres of

constant thickness. To the authors' knowledge, there is no literature for spherical shell segments based

on 3D analysis. Gautham and Ganesan (1992) reported some studies on free vibration analysis of open

spherical shells, based on a thick (2D) shell theory. A thick shell ®nite element was developed for the

analysis of general shells of revolution. Frequencies were obtained for spherical caps with and without

center cutout having simply supported or clamped boundary conditions. Recently, Lim et al. (1996)

analyzed the spherical shell with variable thickness using 2D shell theory. In their paper, the vibration

of shallow spherical and ellipsoidal dishes with variable thickness along the gradient from the apex was

studied. The Ritz method was employed and the results were compared with ®nite element and

experimental ones.

In the present 3D analysis, the Ritz method is used to obtain accurate frequencies for thick spherical

shell segments of uniform or varying thickness. Although the method itself does not yield exact

solutions, proper use of displacement components in the form of algebraic polynomials permits one to

obtain frequency upper bounds that are as close to the exact values as desired. Frequencies presented in

this work are thus obtained that are very close to their exact values, being exact to four signi®cant

®gures.
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2. Analysis

Fig. 1 shows the cross-section of a spherical segment with thickness (h ) varying in the meridional
direction �f� and having a midsurface spherical radius a. The ends of the shell (top and bottom) are
determined by ft and fb, where the thicknesses are ht and hb, respectively. The curvilinear coordinate
system �f, z, y), also shown in the ®gure, is used in the analysis. The meridional �f� and thickness (z )
coordinates are measured from the axis of revolution ( y ) and normally from the midsurface of the shell,
respectively, and y is the circumferential angle.

Utilizing tensor analysis in the ®rst author's dissertation (Kang, 1997), the three equations of motion
in the curvilinear coordinate system �f, z, y� were found to be:

sfz, z � 1

a� z

�
�sff ÿ syy�cot f� sfy, ycsc f� sff, f � 3sfz

� � r �uf,

szz, z � 1

a� z

�
sfzcot f� szy, ycsc f� sfz, f ÿ syy � 2szz

� � r �uz,

szy, z � 1

a� z

�
2sfycot f� syy, ycsc f� sfy, f � 3szy

� � r �uy, �1�

where the sij are the normal �i � j� and shear �i 6�j� stress components; uf, uz, and uy are the
displacement components in the f, z, and y directions, respectively; r is mass density per unit volume;
the commas indicate spatial derivatives; and the dots denote time derivatives.

The well-known relationships between the stress and tensorial strains eij of isotropic, linear elasticity
are:

Fig. 1. Cross-section of a spherical shell segment with varying thickness and the coordinate system �f, z, y).
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sii � l�eff � ezz � eyy � � 2Geii, �2a�

sij � 2Geij, i 6�j, �2b�
where l and G are the LameÂ parameters, expressed in terms of Young's modulus (E ) and Poisson's
ratio �n� for an isotropic solid as:

l � En
�1� n��1ÿ 2n� , G � E

2�1� n� : �3�

The 3D tensorial strains are found to be related to the three displacements uf, uz, and uy, by (Kang,
1997)

eff � 1

a� z
�uf, f � uz�,

ezz � uz, z,

eyy � 1

�a� z�sin f
ÿ
uy, y � ufcos f� uzsin f

�
,

efz � 1

2

�
uf, z ÿ 1

a� z
�uf ÿ uz, f �

�
,

efy � 1

2�a� z�
�
uy, f � 1

sin f
ÿ
uf, y ÿ uycos f

��
,

ezy � 1

2

�
uy, z � 1

�a� z�sin f

ÿ
uz, y ÿ uysin f

��
: �4�

Substituting Eqs. (2a) and (2b) into Eq. (1), one obtains a set of second-order partial di�erential
equations in uf, uz, and uy governing free vibrations. Exact solutions are intractable, however, because
of the variable coe�cients, 1=�a� z�, 1=�a� z�sin f, and 1=�a� z�2sin f, that appear in many terms.
Alternatively, one may approach the problem from an energy perspective.

Because the strains are related to the displacement components by Eq. (4), and the stresses are
linearly related to the strains, unacceptable strain and stress singularities may be encountered at f � 0
and p due to the term 1=�a� z�sin f: The present analysis is limited to open spherical shell segments.
That is, ft and fb are neither zero nor p: Closed shells occur if either ft or fb � 0 or p: Such cases
require the enforcement of regularity conditions at each junction where the shell closed.

During vibratory deformation of the body, its strain (potential) energy (V ) is the integral over the
domain �O):

V � 1

2

�
O

ÿ
sffeff � szzezz � syyeyy � 2sfzefz � 2sfyefy � 2szyezy

��a� z�2sin f df dz dy: �5�

Substituting Eqs. (2a) and (2b) into Eq. (5) results in the strain energy in terms of the three
displacements:
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V � 1

2

�
O

h
l�eff � ezz � eyy �2�2G

n
e2ff � e2zz � e2yy � 2

�
e2fz � e2zy � e2fy

�oi
�a� z�2sin f df dz dy, �6�

where the tensorial strains eij are de®ned in terms of the three displacements by Eq. (4).
The kinetic energy (T ) is simply

T � 1

2

�
O
r
�

_u2
f � _u2

z � _u2
y

�
�a� z�2sin f df dz dy: �7�

For convenience, the thickness coordinate z is made dimensionless as:

z � z

hm

, �8�

where hm is the average shell thickness. If the thickness varies linearly, it is de®ned by

hm � ht � hb

2
: �9�

For the free, undamped vibration, the time (t ) response of the three displacements is sinusoidal and,
moreover, the circular symmetry of the shell allows the displacements to be expressed by

uf�f, z, y, t� � Uf�f, z�cos ny sin�ot� a�, �10a�

uz�f, z, y, t� � Uz�f, z�cos ny sin�ot� a�, �10b�

uy�f, z, y, t� � Uy�f, z�sin ny sin�ot� a�, �10c�
where Uf, Uz, and Uy are displacement functions of f and z, o is a natural frequency, and a is an
arbitrary phase angle determined by the initial conditions. The circumferential wave number is taken to
be an integer �n � 0, 1, 2, 3, . . ., 1� for a circumferentially closed shell �0RyR3608), to ensure
periodicity in y: Then Eqs. (10a)±(10c) account for all free vibration modes except for the torsional
ones. These modes arise from an alternative set of solutions which are the same as Eqs. (10a)±(10c),
except that cos ny and sin ny are interchanged. For n > 0, this set duplicates the solutions of Eqs. (10a)±
(10c), with the symmetry axes of the mode shapes being rotated. But for n � 0 the alternative set
reduces to uf � uz � 0, uy � U �y�f, z�sin�ot� a�, which corresponds to the torsional modes. The
displacements uncouple by circumferential mode number (n ), leaving only coupling in f and z.
The Ritz method uses the maximum potential (strain) energy (Vmax) and the maximum kinetic energy

(Tmax) functionals in a cycle of vibratory motion. The functionals are obtained by setting sin2�ot� a�
and cos2�ot� a� equal to unity in Eqs. (6) and (7) after the displacements (10a)±(10c) are substituted,
and by using the nondimensional thickness coordinate z as follows:

Vmax � hmG

2

�fb

ft

�d�f�=2
ÿd�f�=2

��
l
G
�K1 � K2 � K3� 2�2

ÿ
K 2

1 � K 2
2 � K 2

3

�� K 2
4

�
G1 �

ÿ
K 2

5 � K 2
6

�
G2

�
� �a=hm � z�2sin f dz df, �11�

Tmax � rh3m
2

�fb

ft

�d�f�=2
ÿd�f�=2

h�
U 2

f �U 2
z

�
G1 �U 2

yG2

i
�a=hm � z�2sin f dz df, �12�
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where

K1 � Ufcos f�Uzsin f� nUy

�a=hm � z�sin f
, �13a�

K2 � Uz �Uf, f

a=hm � z
, �13b�

K3 � Uz, z, �13c�

K4 � Uf ÿUz, f

a=hm � z
ÿUf, z, �13d�

K5 � nUz �Uysin f
�a=hm � z�sin f

ÿUy, z, �13e�

K6 � 1

a=hm � z

�
Uy, f ÿ nUf �Uycos f

sin f

�
: �13f�

Assuming that the shell thickness variation is limited to be linear with f, the nondimensional thickness
d�f� can be de®ned by

d�f� � h�f�
hm

� 1

1ÿ f�

�
1ÿ h�

fm

f� h� ÿ f�
�
, �14�

where

fm �
ft � fb

2
, �15�

h� and f� are the thickness and meridional angle ratios, de®ned by

h� � ht

hm

, f� � ft

fm

, �16�

and G1 and G2 are constants de®ned by

G1 �
� 2p

0

cos 2ny dy �
�
2p if n � 0
p if nr1

,

G2 �
� 2p

0

sin2ny dy �
�
0 if n � 0
p if nr1

: �17�

It is known that l and G have the same units as E from Eq. (3). The nondimensional constant l=G in
Eq. (11) involves only n; i.e., l=G � 2n=�1ÿ 2n�:

The displacement functions Uf, Uz, and Uy in Eqs. (10a)±(10c) are further assumed as
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Uf�f, z� � Zf�f, z�
XI
i�0

XJ
j�0

Aijf
iz j, �18a�

Uz�f, z� � Zz�f, z�
XK
k�0

XL
l�0

Bklf
kzl, �18b�

Uy�f, z� � Zy�f, z�
XM
m�0

XN
n�0

Cmnf
mzn, �18c�

and similarly for U �y, where i, j, k, l, m, and n are integers; I, J, K, L, M, and N are the highest degrees
of the polynomial terms; Aij,Bkl, and Cmn are arbitrary coe�cients; and the Z are functions depending
upon the geometric boundary conditions to be enforced. For example:

1. Completely free: Zf � Zz � Zy � 1,
2. Top end �f � ft� ®xed, remaining boundaries free: Zf � Zz � Zy � fÿ ft,
3. Bottom end �f � fb� ®xed, remaining boundaries free: Zf � Zz � Zy � fÿ fb,
4. Both ends ®xed, remaining boundaries free: Zf�Zz�Zy��fÿ ft��fÿ fb�,
5. Inner surface �z � ÿh=2� ®xed, remaining boundaries free: Zf � Zz � Zy � z� d�f�=2,
6. Outer surface �z � h=2� ®xed, remaining boundaries free: Zf � Zz � Zy � zÿ d�f�=2,
7. Both surfaces restrained normally and meridionally, but not circumferentially:

Zf � Zz �
�
z� d�f�=2��zÿ d�f�=2�, Zy � 1,

8. Both surfaces restrained normally, but not tangentially:

Zz �
�
z� d�f�=2��zÿ d�f�=2�, Zf � Zy � 1:

The functions of Zf, Zz, and Zy shown above, impose only the necessary geometric constraints. Together
with the algebraic polynomials in Eqs. (18a)±(18c), they form function sets which are mathematically
complete (Kantorovich and Krylov, 1958, pp. 266±268). Thus, the function sets are capable of
representing any 3D motion of the body with increasing accuracy as the indices I, J, . . . , N are
increased. In the limit, as su�cient terms are taken, all internal kinematic constraints vanish, and the
functions (18a)±(18c) will approach the exact solution as closely as desired.

The eigenvalue problem is formulated by minimizing the free vibration frequencies with respect to the
arbitrary coe�cients, thereby minimizing the e�ects of the internal constraints present, when the
function sets are ®nite. This corresponds to the equations (Ritz, 1909):

@

@Aij
�Vmax ÿ Tmax � � 0 �i � 0, 1, 2, . . . ,I; j � 0, 1, 2, . . . ,J�,

@

@Bkl
�Vmax ÿ Tmax � � 0 �k � 0, 1, 2, . . . ,K; l � 0, 1, 2, . . . ,L�,

@

@Cmn
�Vmax ÿ Tmax � � 0 �m � 0, 1, 2, . . . ,M; n � 0, 1, 2, . . . ,N�: �19�

Eq. (19) yield a set of �I� 1��J� 1� � �K� 1��L� 1� � �M� 1��N� 1� linear, homogeneous, algebraic
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equations in the unknowns Aij, Bkl, and Cmn: For a nontrivial solution, the determinant of the coe�cient
matrix is set equal to zero, which yields the frequencies (eigenvalues). These frequencies are upper
bounds on the exact values. The mode shape (eigenfunction) corresponding to each frequency is
obtained, in the usual manner, by substituting each o back into the set of algebraic equations, and
solving for the ratios of coe�cients.

3. Convergence study

Table 1 shows a convergence study made for a completely free, thick �hm=a � 0:2� spherical shell
segment �ft � 308, fb � 908� with considerable thickness variation �ht=hb � 1=3). The second shape
in Fig. 2 is drawn with these ratios. Poisson's ratio �n� is taken to be 0.3. Table 1 shows the ®rst
®ve nondimensional frequencies oa

���������
r=G
p

for one circumferential wave (n = 1) in the mode
shapes. The number of polynomial terms taken in the thickness (z or z� direction is

Table 1

Convergence of frequencies oa
���������
r=G
p

of a completely free, spherical shell segment with linearly varying thickness for the ®ve lowest

modes of n = 1 with ft � 308, fb � 908, hm=a � 0:2, ht=hb � 1=3, and n � 0:3

TZa TPb DETc 1 2 3 4 5

2 2 12 2.478 2.897 5.024 6.664 13.536

2 4 24 2.022 2.447 2.973 4.510 5.658

2 6 36 2.011 2.441 2.914 4.464 5.186

2 8 48 2.010 2.441 2.912 4.456 5.085

2 10 60 2.009 2.441 2.911 4.456 5.081

3 2 18 2.476 2.887 5.015 6.611 13.053

3 4 36 2.001 2.435 2.903 4.499 5.623

3 6 54 1.989 2.429 2.848 4.422 4.963

3 8 72 1.987 2.429 2.846 4.404 4.872

3 10 90 1.987 2.429 2.845 4.403 4.869

4 2 24 2.475 2.885 5.014 6.603 12.429

4 4 48 1.997 2.434 2.895 4.494 5.614

4 6 72 1.985 2.428 2.840 4.410 4.918

4 8 96 1.983 2.427 2.838 4.388 4.832

4 10 120 1.982 2.427 2.837 4.387 4.829

5 2 30 2.474 2.882 5.013 6.597 12.427

5 4 60 1.997 2.433 2.894 4.494 5.611

5 6 90 1.984 2.428 2.839 4.409 4.914

5 8 120 1.983 2.427 2.837 4.387 4.830

5 10 150 1.982 2.427 2.837 4.386 4.827

6 2 36 2.474 2.881 5.013 6.596 12.424

6 4 72 1.996 2.433 2.893 4.493 5.609

6 6 108 1.984 2.428 2.839 4.408 4.912

6 8 144 1.982 2.427 2.837 4.387 4.829

6 9 162 1.982 2.427 2.837 4.386 4.827

a Total number of natural polynomial terms used in the z or z direction.
b Total number of natural polynomial terms used in the f direction.
c Determinant order.
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TZ � J� 1 � L� 1 � N� 1, and the number in the meridional �f� direction is TP � I� 1 �
K� 1 �M� 1: The resulting order of the frequency determinant generated, is labeled ``DET'' in

Table 1.

It is seen that the frequencies have converged monotonically to four signi®cant ®gures in Table 1 and,

for the reasons given above, these are exact values to four digits. Values underlined are the converged

values for the smallest determinant sizes with which they are achieved. The four-digit convergence for

the ®rst ®ve frequencies requires determinants of order 96±150. For TZ = 6, the largest value of TP

which may be used is nine, before numerical ill-conditioning is encountered with the ordinary algebraic

polynomial trial functions of Eqs. (18a)±(18c).

It is interesting to note that the solutions presented in Table 1 for TZ = 2, by which a thick (2D)

shell theory is represented, even when TP = 10, are inaccurate when compared with the converged

values for higher TZ. Nevertheless, these relatively inaccurate solutions are much more accurate than

would be obtained from classical (thin) shell theory, and also more accurate than solutions from a ®rst

order shear deformation theory. The latter theory corresponds to J � N � 1, but L is only zero,

preventing thickness-stretch displacement. The classical theory has additional kinematic constraints

between Uf, Uz, and Uy: Conversely, even if three-digit accuracy is needed for the frequencies, then

Table 1 shows that TZ must be at least four. Very similar convergence rates were found for the n = 0

(axisymmetric and torsional) and n = 2 modes.

Extensive additional convergence studies were also made (Kang, 1997) for n = 0 (axisymmetric and

torsional) for the spherical shell segment of Table 1, as well as for spherical shell segments having other

Fig. 2. Cross-sections of spherical shell segments for ft � 308, fb � 908, and hm=a � 0:2:
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thickness variations �ht=hb � 1 and 0). Convergence rates for all cases were approximately the same as
that seen in Table 1.

4. Numerical results and discussion

Tables 2 and 3 present accurate (four signi®cant ®gure) nondimensional frequencies oa
���������
r=G
p

of
completely free, thick �hm=a � 0:2� spherical shell segments for �ft, fb� � �308, 908� (see Fig. 2), (458,

Table 2

Nondimensional frequencies oa
���������
r=G
p

of completely free, spherical shell segments with constant thickness �ht=hb � 1� for

hm=a � 0:2 and n � 0:3a

n Mode (ft, fb)

(308, 908) (458, 908) (308, 1508) (458, 1358) (308, 1208)

0(T ) 1 3.448 4.238 1.987 2.397 2.466

2 6.241 8.072 3.386 4.238 4.303

3 9.115 11.96 4.787 6.140 6.192

4 12.03 15.86 6.216 8.079 8.121

5 14.97 15.90 7.671 10.04 10.08

0(A ) 1 (3) 1.879 (3) 1.653 (4) 1.672 (2) 1.468 (3) 1.705

2 2.132 2.343 1.879 1.837 (5) 1.891

3 2.727 3.489 2.079 2.310 2.328

4 4.708 6.802 2.486 3.016 3.034

5 5.520 7.010 2.969 3.778 3.829

1 1 (5) 2.064 2.233 (3) 1.570 (4) 1.778 (4) 1.764

2 2.357 2.531 (5) 1.693 1.874 1.925

3 2.919 3.593 2.332 2.607 2.579

4 4.310 4.760 2.407 2.909 2.983

5 4.886 6.813 3.157 3.477 3.585

2 1 2.608 2.754 1.709 1.980 2.016

2 2.815 3.455 2.110 2.237 2.279

3 3.799 4.048 2.685 3.209 3.278

4 4.987 5.883 2.835 3.285 3.336

5 5.285 6.657 3.583 4.404 4.262

3 1 (2) 1.539 (2) 0.8263 (1) 1.098 (1) 0.7473 (2) 1.498

2 3.304 3.323 (2) 1.490 2.234 2.398

3 3.333 4.028 2.110 2.851 2.916

4 4.880 5.175 2.710 3.651 3.741

5 5.487 6.736 3.318 3.861 4.054

4 1 (1) 0.8948 (1) 0.7451 2.108 (3) 1.767 (1) 1.245

2 2.739 (4) 1.844 2.602 (5) 1.873 2.367

3 4.102 4.054 3.135 2.751 3.219

4 4.195 4.551 3.647 3.597 3.770

5 5.766 6.177 4.227 4.316 4.439

5 1 (4) 1.901 (5) 1.888 2.732 2.601 2.217

2 3.723 3.011 3.451 2.968 3.079

3 4.970 4.898 4.191 3.565 4.090

4 5.326 5.179 4.851 4.411 4.769

5 6.706 6.916 5.232 5.181 5.342

a Note: T Torsional mode; A Axisymmetric mode. Numbers in parentheses identify frequency sequences.
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908), (308, 1508), (458, 1358) (see Fig. 3), and (308, 1208), with constant thickness �ht=hb � 1, Table 2)
and considerable thickness variation �ht=hb � 1=3, Table 3). Poisson's ratio �n� was taken to be 0.3.

Thirty-®ve frequencies are given for each con®guration, which arise from seven circumferential mode
numbers (n ) (i.e., n � 0�T �, 0(A ), 1, 2, 3, 4, 5) and the ®rst ®ve modes for each value of n, where T and
A indicate torsional and axisymmetric modes, respectively. Numbers in parentheses identify the ®rst ®ve
frequencies for each con®guration. The zero frequencies of rigid body modes are omitted from the
tables.

It is seen that irrespective of the values of �ft, fb), the fundamental (lowest) frequencies for constant

Table 3

Nondimensional frequencies oa
���������
r=G
p

of completely free, spherical shell segments with linearly varying thickness �ht=hb � 1=3� for
hm=a � 0:2 and n � 0:3a

n Mode (ft, fb)

(308, 908) (458, 908) (308, 1508) (458, 1358) (308, 1208)

0(T ) 1 3.668 4.475 2.132 2.470 2.580

2 6.385 8.192 3.492 4.290 4.394

3 9.200 11.94 4.862 6.172 6.255

4 11.91 12.29 6.268 8.093 8.160

5 12.11 15.80 7.707 10.04 10.10

0(A ) 1 (3) 1.809 (4) 1.634 (2) 0.8571 (3) 1.438 (3) 1.654

2 (5) 2.163 2.383 1.764 1.832 1.878

3 2.688 3.453 1.911 2.300 2.303

4 4.617 6.675 2.162 2.970 2.983

5 5.700 7.260 2.513 3.810 3.849

1 1 (4) 1.982 2.205 (3) 1.539 (4) 1.669 (2) 1.631

2 2.427 2.548 1.817 1.957 2.035

3 2.837 3.540 2.384 2.595 2.528

4 4.386 4.966 2.465 2.881 2.940

5 4.827 6.736 3.128 3.490 3.620

2 1 2.380 2.715 (4) 1.634 (5) 1.828 (5) 1.801

2 2.916 3.440 2.196 2.340 2.383

3 3.707 3.944 2.658 3.131 3.164

4 4.903 6.043 2.941 3.343 3.382

5 5.403 6.827 3.553 4.366 4.273

3 1 (1) 1.060 (1) 0.6925 (1) 0.7705 (1) 1.041 (1) 0.9023

2 2.896 3.197 (5) 1.722 2.108 2.154

3 3.464 4.011 2.137 2.875 2.912

4 4.880 5.087 2.714 3.579 3.629

5 5.355 6.952 3.298 3.918 4.029

4 1 (2) 1.250 (2) 0.8703 1.928 (2) 1.095 (4) 1.658

2 2.273 (3) 1.484 2.385 2.140 2.052

3 3.590 3.803 3.034 2.672 2.792

4 4.220 4.570 3.669 3.525 3.611

5 5.925 6.211 4.146 4.269 4.279

5 1 2.274 (5) 2.175 2.625 2.088 2.611

2 3.389 2.480 3.227 2.916 2.985

3 4.458 4.494 3.885 3.594 3.682

4 5.114 5.266 4.639 4.285 4.441

5 6.668 7.065 5.205 5.120 5.081

a Note: T Torsional mode; A Axisymmetric mode. Numbers in parentheses identify frequency sequences.
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thickness are for modes having four circumferential half-waves (n = 4), except for �ft, fb�� �308, 1508�
and (458, 1358) while the ones for variable thickness are for n = 3 with no exceptions.

The axisymmetric (``breathing'') modes are seen to be signi®cant for each of the shell con®gurations,
each having at least one such mode among the ®rst ®ve. However, the torsional modes all correspond to
higher frequencies.

5. Conclusions

Accurate frequency data determined by the 3D Ritz analysis have been presented for thick, spherical
shell segments. The analysis uses the 3D equations of the theory of elasticity in their general forms for
isotropic, homogeneous materials. They are only limited to small strains. No other constraints are
placed upon the displacements. This is in stark contrast with the classical 2D shell theories, which make
very limiting assumptions about the displacement variations through the shell thickness. Although the
method has the capability of analyzing accurately very thick shells which 2D shell theories (thin or

Fig. 3. Cross-sections of spherical shell segments for ft � 458, fb � 1358, and hm=a � 0:2
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thick) cannot, it can also be applied to thin shells, thereby determining conclusively the accuracies of the
shell theories.

The method is straightforward, but it is capable of determining frequencies and mode shapes as close
to the exact ones as desired. It can therefore obtain benchmark results against which 3D ®nite element
results may be compared to determine the accuracy of the latter. Moreover, the frequency determinants
required by the present method are at least an order of magnitude smaller than those needed by a ®nite
element analysis of comparable accuracy.
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